XII Конференция молодых ученых, Сочи
Outline

- Motivation
- Physical properties of SmB$_6$
- Experiment – NMR under pressure
- Results
- Conclusions
Short history

- 2004 - graduated at University of P. J. Šafárik, Košice, Slovakia
- 2008 - PhD. study at Institute of Experimental Physics, SAS, Košice – NFL system YbCu$_{5-x}$Al$_x$
- 2009 – 2 years postdoc at University of Hyogo, Japan – Japan Society for the Promotion of Science (JSPS)

Main amis:
- study of sample SmB$_6$ (suitable due to high intensity of signal form 11B nuclei)
- utilizing NMR spectroscopy
- high pressure technique (piston-cylinder pressure cell up to 30 kbar)
- apply NMR spectroscopy using new high pressure apparatus (modified Bridgman anvil cell)

<table>
<thead>
<tr>
<th>United States Patent</th>
<th>Patent No.:</th>
<th>Date of Patent:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HIGH-PRESSURE GENERATION APPARATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent No.</td>
</tr>
<tr>
<td>------------</td>
</tr>
</tbody>
</table>
Motivation

- Rare-earth borides (REB$_2$, REB$_4$, REB$_6$, REB$_{12}$ etc. RE=rare-earth metal)
 - High melting point, high hardness, usually metallic behavior
- Hexaborides – various physical phenomenon in one crystallographic structure
 - Simple non-magnetic metal LaB$_6$
 - Ferromagnetic semiconductor EuB$_6$
 - Metals with RKKY interaction PrB$_6$, NdB$_6$, GdB$_6$, DyB$_6$
 - YB$_6$ superconductor
 - Heavy–Fermion antiferromagnet CeB$_6$
 - Valence-fluctuation systems SmB$_6$
- Lanthanoids – hexaborides REB$_6$

<table>
<thead>
<tr>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Pm</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
</tr>
<tr>
<td>Semiconductors</td>
<td></td>
</tr>
</tbody>
</table>

Number of conduction electrons in SmB$_6$ should be equal to number of Sm$^{3+}$

=> metallic behavior, magnetic order Intermediat–valence system, nonmagnetic !?
Kondo insulator SmB$_6$

- ~50 years ~150 papers related to SmB$_6$
- Still open questions:
 - origin of gap E_g
 - origin of in-gap states
 - mechanism of low temperature conductivity
 - ground state: metallic or non-metallic?
Physical properties of SmB$_6$

- Cubic structure CsCl type
- X-ray absorption at the L$_{III}$ from 300 K down to 4.2 K [Tarascon et al., JP41, 1141 (1980)]
- Valence change from 2.60 (at 300 K) to 2.53 (at 4.2 K) -> increase of Sm$^{2+}$ by 17.5%
- Fluctuation between Sm$^{2+}$ and Sm$^{3+}$ approximately 10^{12}-10^{13} s$^{-1}$
- Homogeneously mixed-valence system

Sm: [Xe] $4f^6 5d^0 6s^2$

$4f^6$ (Sm$^{2+}$) $J=0$

$4f^5 5d^1$ (Sm$^{3+}$) $J=5/2$

INTERMEDIATE VALENCE SYSTEM

Sm$^{2+}$: Sm$^{3+}$ $\approx 4 : 6$ ($\nu \approx 2.6$)
Electrical resistivity

- **SmB$_6$** is strongly correlated 4f system exhibiting gap E_g few meV
- **Kondo insulator** with narrow (10meV) transport and spin gap
 - E_g is stable at high magnetic field and with substitution
 - Suppressed with applied pressure
- Theoretical models of E_g:
 - Hybridization of d-f states; Mott
 - Falicov-Kimball
 - Wigner lattice; Kasuya
 - Kondo lattice

\[
W(T) = \frac{d \ln \rho(T)}{d \left(\frac{1}{k_B T} \right)}
\]

[Flachbart et al., Physica B (2001)]
[Gabáni, PhD. Thesis 2001]
Band structure

- Hybridization gap $E_g \sim 10 - 20 \text{ meV}$
- Below around 15 K another in-gap band with $E_d \sim 3 - 5 \text{ meV}$
- Theoretical models:
 - Mott's minimum of conductivity
 - Wigner's liquid
 - Exciton-polaron complexes
 - Bose-Einstein condensation of excitons
 - Anisotropic hybridization – pseudo gap
 - Strongly interacted Kondo holes
 - Etc.

- Open questions:
 - origin of gap E_g
 - origin of in-gap states
 - mechanism of low temperature conductivity
 - ground state: metallic or non-metallic?

[Yanase and Harima, PTP108 (1992)]
Electrical resistivity under pressure

- Resistivity under excellent hydrostatic conditions
- Pressure medium:
 - Bridgman cell – steatite
 - DAC – liquid argon
- At critical pressure about 10 GPa gap closes
- Transition metal-insulator and magnetic-nonmagnetic phase are intimately liked
- Sensitivity to pressure inhomogeneity – anisotropy of gap

[Derr et al., PRB77 (2008)]

[Gabáni et al., PRB67 (2003)]
NMR of SmB$_6$

Intensity [a.u.]
External Field [T]

$T = 4.2 \text{ K}$

$H_0 \parallel [001]$

single crystal
powder

$\theta = 0^\circ$: 0, $\pm 2\pi \nu_Q/\gamma_N$ $^{11}\text{B}_1$

$\theta = 90^\circ$: 0, $\pm \pi \nu_Q/\gamma_N$ $^{11}\text{B}_2$

Electric quadrupole interaction – shift of the field for resonance

$\Delta H = -\nu_Q \frac{\pi}{2\gamma_N} \left(3\cos^2 \theta - 1\right)(2m-1)$

^{11}B uniaxial local symmetry
$I = 3/2, \gamma = 13.66 \text{ MHz/T}$

^{11}B nuclear spin system

Sm$^{3+}$ spin fluctuations
NMR of SmB\textsubscript{6} from 2.5 K to 850 K

Unusual temperature dependence of $1/T_1$

Not like in case of other semiconductors

Above 20 K activation type temperature dependence

Relaxation process – dominant hyperfine interaction of the 11B with $4f$ electrons of the Sm$^{3+}$ ions

LaB\textsubscript{6} – non-magnetic, relaxation only with conduction electrons

Qualitatively can be explained by simple model of DOS of $4f$ states with gap of 50 K

Below 15 K another relaxation process

Low energy magnetic excitations which cannot be attributed to the magnetic impurities => intrinsic properties of SmB\textsubscript{6}

[Takigawa et al., JPSJ50 (1981)]
NMR at high magnetic fields

- Above 20 K the $1/T_1$ is not sensitive on mag. field up to 37 T – hybridization gap remains open
- Magnetic field suppress $1/T_1$ below 20 K
- Intrinsic origin rather than from impurity

[Image of NMR graph showing temperature vs. $1/T_1$ for different magnetic fields]

[Caldwell et al., PRB75 (2007)]
Experimental details

NMR
- No report about NMR under pressure
- Single crystal samples prepared by floating zone melting crushed into powder
 - Higher penetration of RF signal
 - Demagnetization effect
- $\text{RRR} = \frac{R(300 \text{ K})}{R(4.2 \text{ K})} = 1.2 \times 10^4$
- $^{11}\text{B-NMR}$ - standard spin-echo technique with a phase-coherent pulsed spectrometer

Pressure
- Piston-cylinder type pressure cell (NiCrAl/ BeCu alloy)
- Maximum pressure up to 30 kbar
- Manganin (room temperature) and tin (low temperature, T_c) wire manometers
- Pressure medium:
 - Daphne oil 7373 (16.5 kbar)
 - polyethylsiloxane (25.5 kbar)
Spin–lattice relaxation time

- \(T_1 \) was measured at the central line (+1/2 \(\rightarrow \) 1/2), and determined by fitting the data to the relaxation function

\[
\frac{M(\infty) - M(t)}{M(\infty)} = A \left(\frac{1}{10} \exp\left(\frac{-t}{T_1}\right) + \frac{9}{10} \exp\left(\frac{-6t}{T_1}\right) \right)
\]

- Above 20 K in good agreement with Takigawa et al.
- \(1/T_1 \) increases with increasing pressure
- \(1/T_1 \) at 25.5 kbar is enhanced by 30.7\% (at 70 K) compared to the value at ambient pressure, fitting error is less than 3\%.
- Pressure-induced increase in \(1/T_1 \) is expected from the reduction of the gap upon pressure as indicated by the transport measurements under pressure.
The number of electrons excited above the energy gap E_g increases with temperature and $1/T_1$ will show an activation type temperature dependence.

To extract pressure dependence of E_g, we can fit the data with simple exponential function:

$$\frac{1}{T_1} \approx \exp \left(\frac{-E_g}{2k_B T}\right)$$

Gap energy: 7.5 meV at 1 bar, 5.5 meV at 16.5 kbar, 4.7 meV at 25.5 kbar.

At critical pressure is expected MO at 12 K \Rightarrow divergence of $1/T_1$.
Modified Bridgman anvil cell

N. Takeshita, NIAIST, Tsukuba
Y. Kohori, H. Fukazawa – Chiba Univ.
Pressure up to 10 GPa
1.5 x 1.5 mm, glycerine – press. medium
NMR under very high pressure

• Measurements under very high pressure
• Very few NMR measurements above 3 GPa
 ➢ Limitation of piston-cylinder pressure cell
 ➢ Very small experimental volume in case of diamond anvil cell and Bridgman anvil cell
 ➢ Boron – strong signal
 ➢ Actually more than 6 GPa

Pristas et al., unpublished
Single crystal NMR

• 11B-NMR of single crystal sample of SmB$_6$
• In $<111>$ direction signal is weaker
• Anisotropy of relaxation times
Conclusions

- Measurement of 11B–NMR of powder sample of SmB$_6$ under pressure up to 25.5 kbar at different magnetic fields
 - Above 20 K the spin–lattice relaxation rate is not sensitive on change of magnetic field
- With increasing pressure – enhancement of value of $1/T_1 =>$ closing of hybridization gap:
 - From 7.5 meV at ambient pressure down to 4.7 meV at 25.5 kbar
- Possibility of measurement 11B–NMR spectra using modified Bridgman anvil cell
- Anisotropy of relaxation times in different directions for single crystal

G. Pristáš*, T. Mito, T. Kohara
Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678–1297, Japan

S. Gabáni, M. Reiffers, K. Flachbart,
*Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia

N. Takeshita
Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 505–8562, Japan

N. Shitsevalova
Institute for Problems of Material Science, National Academy of Sciences of Ukraine, Krzhyzhanovskiy Str. 3, 03680 Kiev, Ukraine

Thank you for your attention!
Comparison with resistivity data

- Difference attributed to ‘probe dependence’
 - Estimation from T_1 data - only magnetic $4f$ electronic states are reflected
 - Transport measurement probes basically all components of electrons excited above the gap.

- More rapid decrease of E_g as a function of pressure
 - not only from the suppression of the gap, but also from change of Sm valence ($\text{Sm}^{2+} \rightarrow \text{Sm}^{3+}$)
 - Gradual shift of ground state from nonmagnetic to magnetic

Difference in comparison with resistivity – attributed to ‘probe dependence’

Different mechanism of measurement; resistivity ‘see’ all electrons in conduction band; NMR only Sm^{3+} ions

shift of ground state from nonmagnetic to magnetic
Nuclear magnetic resonance (NMR) is a physical phenomenon in which magnetic nuclei in a magnetic field absorb and re-emit electromagnetic radiation.

Nucleus possesses a total magnetic moment μ and total angular momentum J

$\mu = \gamma J$

two parallel vectors, γ gyromagnetic ratio

Application of magnetic field produces an interaction energy:

$E = -\mu B$

if B is along the z-direction:

$E = -\gamma \hbar B_0 m$, $m = I, I-1, \ldots, -I$

Angular momentum operator I,

$J = \hbar I$

$2I+1$ values
Nucleus with I=1/2

\[\Delta E = \gamma \hbar H_0 \]

To detect such transition we have to employed resonant technique.
We can excite system by applying radio frequency (RF) signal.
Absorption and radiation of nuclei ($I=1/2$) in magnetic field B.

Population distribution: $$\frac{N_-}{N_+} = \exp^{-\frac{\gamma B}{k_B T}}$$

T_1 is the mean time for an individual nucleus to return to its thermal equilibrium state with lattice. *Spin-lattice relaxation time.*
Nuclear Magnetic Resonance of SmB$_6$

- NMR of SmB$_6$ from 2.5 K to 850 K
- Unusual temperature dependence of $1/T_1$
- Not like in case of other semiconductors
- Above 20 K activation type temperature dependence
- Relaxation process – dominant hyperfine interaction of the 11B with 4f electrons of the Sm$^{3+}$ ions
- LaB$_6$ – non-magnetic, relaxation only with conduction electrons
- Qualitatively can be explained by simple model of DOS of 4f states with gap of 50 K
- Below 15 K another relaxation process
- Low energy magnetic excitations which cannot be attributed to the magnetic impurities => intrinsic properties of SmB$_6$

[Takigawa et al., JPSJ50 (1981)]
4f shell is very compact:
- Strong on-site interaction between electrons sitting in the same shell
- Almost no overlap between adjacent f-shells ⇒ subsystem of 4f electrons can be modelled by free ion limit.
2009–2011 – postdoc., Japonsko – NMR under pressure
Resistivity under uniaxial stress

- Resistivity under uniaxial stress
- Anisotropy of resistivity
- \(<111> \) direction is more sensitive for stress
- Anisotropy of gap

Derr et al., JMMM310 (2007)
Spin echo technique

© G. W. Morley

© G. W. Morley
• In real system, there are additional magnetic fields due to electrons as well as due to other nuclei.
• The nuclear spin Hamiltonian involves interactions that are related to the magnetic and electric properties of the nuclei and the experimental conditions of the experiment:

1. **External interactions** - with the static magnetic field \mathbf{H} (*Zeeman effect*)
 - with the oscillating magnetic RF field applied perpendicular to \mathbf{H}

Both external interactions dominate the behaviour of the spin system, but in general they **do not** contain the structural and dynamical information.

2. **Internal interactions** – chemical shift interaction – orbital motion of electrons in \mathbf{H}
 - dipolar interaction – with other nuclei spins
 - quadrupolar interaction – electric field gradients

Ethyl alcohol ($\text{CH}_3\text{CH}_2\text{OH}$)
- splitting of the proton resonance